Fujitsu Cell Phone Accessories MB3891 User Manual

FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27801-1E  
ASSP For Power Management Applications (Mobile Phones)  
Power Management IC  
for GSM Mobile Phone  
MB3891  
DESCRIPTION  
MB3891 is intended to be used in future GSM-phones, Dual Band phones and Dual Mode phones. It contains all  
the necessary functions to support all Digital, Analog and RF blocks in these phones. A Charge-pump including  
a Logic Level Translation circuit is built in to support SIM-card (SmartCard) of both 3 and 5 Volt technology. The  
circuit contains a charger for a rechargeable Lithium coin cell of a Real Time Clock.  
A complex control circuit is built in to generate main reset and to turn on and off the different LDO’s.  
FEATURES  
• Supply voltage range  
: 3 V to 5.5 V  
• Low power consumption current during standby  
• 6-channel low-saturation voltage type series regulator  
: 400 µA (MAX)  
: 2.1 V/2 channels, 2.8 V/3 channels, 2.5 V/2.8 V switch  
• Error prevention function during Low voltage  
• Power on reset function  
• 3 V/5 V SW for SIM-Card  
• SIM interface function  
• Backflow prevention function for Battery-Backup  
Temperature prevention function  
PACKAGE  
64-pin plastic LQFP  
(FPT-64P-M03)  
 
MB3891  
PIN DESCRIPTION  
Pin No.  
Symbol  
N.C.  
I/O  
O
Descriptions  
1, 2  
Non connection.  
LDO3 output pin.  
LDO3 ground pin.  
LDO2 output pin.  
3, 4  
OUT3  
5
6, 7  
GND3  
OUT2  
O
8, 9, 10, 11  
12, 13  
14  
VBAT1  
Battery voltage input pin for LDO1 and LDO2.  
LDO1 output pin.  
OUT1  
O
I
CONT1  
CONT6  
CONT2  
XPOWERGOOD  
DELAYCAP  
GND1  
Power on input from keypad (Active low, Pulled up to VBAT2).  
“CONT6” input from digital system µP (Active high).  
15  
I
16  
I
External accessory supply voltage Enable (Active high).  
Generates the main reset. (Active low, when OUT1 is out of regulation).  
Timing capacitor for XPOWERGOOD delay.  
17  
O
18  
19  
LDO1, LDO2, V-BACKUP, Reference and System ground pin.  
Battery voltage input pin for both UVLO’s, Reference and V-BACKUP  
LDO.  
20  
VBAT2  
21  
22  
V-BACKUP  
VREF  
O
O
O
O
Supply voltage for Charger for rechargeable Lithium coin cell.  
Supply voltage for Reference.  
23  
VFIL  
Reference voltage Filter.  
24  
REF-OUT  
VCC-VSIM  
VSIM-ON  
SIMPROG  
OSC  
Reference output voltage (Present when BACKUP UVLO is high).  
Input voltage for charge pump. (Supplied by VBAT1).  
VSIM supply Enable (Active high).  
25  
26  
I
I
27  
VSIM programming: Low = 3 V SIM, High = 5 V SIM.  
Oscillator output pin.  
28  
29  
VSIMOUT  
VCAP+  
VCAP−  
GND-VSIM  
RESET-IN  
CLK-IN  
µP-IO  
O
Supply voltage for 3 or 5 V SIM-Card (SmartCard).  
Positive side of boost capacitor.  
30  
31  
Negative side of boost capacitor.  
32  
3 or 5 V SIM-Card (SmartCard) ground pin.  
Non level shifted SIM reset (µP side).  
Non level shifted clock (µP side).  
33  
I
I
34  
35  
I/O  
O
Non level shifted bi-directional data input/output (µP side).  
Level shifted SIM reset (SmartCard side).  
Level shifted SIM clock (SmartCard side).  
Level shifted bi-directional SIM data input/output (SmartCard side).  
LDO4 ground pin.  
36  
RST  
37  
CLK  
O
38  
SIM-IO  
I/O  
39  
GND4  
40, 41  
OUT4  
O
LDO4 output pin.  
(Continued)  
3
 
MB3891  
(Continued)  
Pin No.  
Symbol  
VBAT4  
CONT4  
I/O  
Descriptions  
42, 43  
44  
Supply voltage for LDO4.  
I
O
I
OUT4 output voltage selection (“L”=2.8 V,“H”=2.5 V).  
Output of general purpose switch number 1 (Drain).  
Input of general purpose switch number 1 (Source).  
Output of general purpose switch number 3 (Drain).  
Input of general purpose switch number 3 (Source).  
Non connection.  
45  
46  
SW1-OUTPUT  
SW1-INPUT  
SW3-OUTPUT  
SW3-INPUT  
N.C.  
47  
O
I
48  
49, 50  
51  
SW2-OUTPUT  
SW2-INPUT  
SW1-ON  
SW2-ON  
SW3-ON  
CONT3  
O
I
Output of general purpose switch number 2 (Drain).  
Input of general purpose switch number 2 (Source).  
General purpose switch number 1 Enable (Active high).  
General purpose switch number 2 Enable (Active high).  
General purpose switch number 3 Enable (Active high).  
OUT3 and OUT4 supply voltage Enable (Active high).  
OUT5 supply voltage Enable (Active high).  
Output terminal of LDO5.  
52  
53  
I
54  
I
55  
I
56  
I
57  
CONT5  
I
58  
OUT5  
O
59  
GND5  
LDO5 ground pin.  
60, 61, 62  
63, 64  
VBAT3  
Supply voltage for LDO and LDO5.  
N.C.  
Non connection.  
4
 
MB3891  
BLOCK DIAGRAM  
VBAT2  
20  
VBAT1  
8
9 10 11  
LDO1  
ON  
Over  
Temp  
Protection  
12  
13  
OUT1  
OUT  
14  
CONT1  
17 XPOWERGOOD  
18 DELAYCAP  
POR  
Main  
UVLO  
GND1  
19  
15  
CONT6  
LDO2  
ON  
6
7
OUT2  
OUT  
CONT2 16  
46 SW1-INPUT  
SW1  
SW2  
SW3  
53  
54  
55  
SW1-ON  
SW2-ON  
45 SW1-OUTPUT  
52  
SW2-INPUT  
SW3-ON  
51  
SW2-OUTPUT  
48 SW3-INPUT  
47 SW3-OUTPUT  
60  
CONT3 56  
61  
62  
VBAT3  
CONT5  
CONT4  
57  
44  
LDO3  
ON  
3
4
OUT  
OUT3  
22  
23  
VREF  
VFIL  
5
GND3  
VREF-AMP  
42  
43  
VBAT4  
+
VREF  
LDO4  
ON  
40  
41  
OUT  
OUT  
OUT4  
REF-OUT  
24  
CONT4  
33  
34  
35  
RESET-IN  
CLK-IN  
µP-IO  
39 GND4  
LDO5  
ON  
GSM/SIM  
Logic  
Level  
58  
59  
OUT5  
GND5  
36  
37  
38  
RST  
CLK  
Translation  
LDO6  
ON  
SIM-IO  
BACKUP  
UVLO  
OUT  
21 V-BACKUP  
25  
26  
VCC-VSIM  
VSIM-ON  
VSIMOUT  
Charge-pump  
SIMPROG 27  
28  
30  
VCAP+  
31 VCAP−  
OSC  
32  
29  
VSIMOUT  
N.C.  
Pin : 1, 2, 49, 50, 63, 64  
GND-VSIM  
5
 
MB3891  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Conditions  
Unit  
Min.  
0.3  
0.3  
Max.  
7
VBAT  
V
Power supply voltage  
VCC-VSIM  
7
V
IO  
IO  
OUT1 pin  
120  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
OUT2 pin  
LDO regulator  
IO  
OUT3 pin  
100  
100  
50  
IO  
OUT4 pin  
IO  
OUT5 pin  
VSIMOUT chargepump  
Power dissipation  
IO  
VSIMOUT pin  
Ta +25 °C  
10  
PD  
Tstg  
800*  
+125  
Storage temperature  
55  
* : The packages are mounted on the dual-sided epoxy board(10 cm × 10 cm)  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Min.  
3.0  
Typ.  
3.6  
Max.  
5.5  
VBAT  
VCC-VSIM  
CO  
V
V
Power supply voltage  
3.0  
3.6  
5.5  
LDO capacitor guarantee value  
OUT1 to OUT5, V-BACKUP pin  
REF-OUT pin  
0.8  
1.0  
µF  
REF-OUT capacitor guarantee  
value  
CO  
0.027  
µF  
VSIMOUT capacitor guarantee  
value  
CO  
VSIMOUT pin  
10  
µF  
°C  
Operating ambient temperature  
Ta  
20  
+25  
+85  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
6
 
MB3891  
ELECTRICAL CHARACTERISTICS  
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)  
Value  
Parameter  
Symbol  
Pin No.  
Conditions  
Unit  
Min.  
Typ.  
Max.  
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
UVLO = “L”,  
IBAT1  
80  
µA  
BACKUP UVLO = “L”  
Shutdown supply  
current  
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
UVLO = “L”,  
BACKUP UVLO = “H”  
IBAT2  
IBAT3  
IGND  
160  
400  
µA  
µA  
mA  
V
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
Standby supply  
current  
All circuit’s = On  
(No load)  
All circuit’s -VSIM =  
On Max. load on all  
regulators  
Operating ground  
current  
4, 5, 19,  
32, 59  
10  
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
VTHH  
VTHL  
VTHH  
VTHL  
OUT1 = ON  
2.980  
2.780  
2.980  
2.580  
3.080  
2.880  
3.080  
2.680  
3.180  
2.980  
3.180  
UVLO threshold  
voltage  
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
OUT1 = OFF  
V
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
V-BACKUP = ON  
V-BACKUP = OFF  
V
General  
BACKUP UVLO  
threshold voltage  
8, 9, 10, 11,  
20, 42, 43,  
60, 61, 62  
2.780  
OUT1  
V
0.7 ×  
OUT1  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
16, 56, 57  
16, 56, 57  
14, 15, 44  
14, 15, 44  
26, 27  
V
V
V
V
V
V
0.3 ×  
OUT1  
0
0.7 ×  
VBAT  
VBAT  
Input voltage  
0.3 ×  
VBAT  
0
0.7 ×  
VCC-VSIM  
VCC-VSIM  
0.3 ×  
VCC-VSIM  
26, 27  
0
RPU  
RPU  
RPD  
17  
15*  
kΩ  
kΩ  
kΩ  
Pull-up resistor  
14, 57  
200*  
200*  
Pull-down resistor  
15, 53, 54, 55  
* : Standard design value  
(Continued)  
7
 
MB3891  
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)  
Value  
Pin  
No.  
Parameter  
Symbol  
Conditions  
Unit  
Min. Typ. Max.  
Output voltage  
Line regulation  
Load reguration  
VO  
12, 13 50 µA > OUT1 > 120 mA 2.000 2.100 2.200  
V
Line  
12, 13 3.1 V < VBAT1 < 5.5 V  
10  
30  
mV  
mV  
Load 12, 13 50 µA > OUT1 > 120 mA  
Ripple rejection  
VBAT1/OUT1  
R.R  
12, 13 f = 217 Hz  
45  
dB  
LDO1  
(OUT1)  
Dropout voltage  
VDO  
IGND  
IGND  
12, 13 OUT1 = 120 mA  
500 mV  
GND current at low load  
GND current at max. load  
19  
19  
OUT1 > 1 mA  
30  
2
µA  
OUT1 = 120 mA  
mA  
f = 10 Hz to 1 MHz,  
OUT1 = 1 µF  
Output noise volt. (RMS)  
VNOVL  
VOH  
12, 13  
17  
500  
µV  
V
0.8 ×  
OUT1  
OUT1  
XPOWER-  
GOOD  
(RESET)  
Output voltage  
0.1 ×  
OUT1  
VOL  
17  
17  
0
V
Hold time  
TXPG  
VO  
DELAYCAP = 0.033 µF  
10  
25  
40  
ms  
V
Output voltage  
Line regulation  
Load regulation  
6, 7 50 µA > OUT2 > 50 mA 2.700 2.800 2.900  
Line  
Load  
6, 7 3.1 V < VBAT1 < 5.5 V  
10  
30  
mV  
mV  
6, 7 50 µA > OUT2 > 50 mA  
Ripple rejection  
VBAT1/OUT2  
R.R  
6, 7 f = 217 Hz  
45  
dB  
LDO2  
(OUT2)  
Dropout voltage  
VDO  
IGND  
IGND  
6, 7 OUT2 = 50 mA  
250 mV  
GND current at low load  
GND current at max. load  
19  
19  
OUT2 > 1 mA  
OUT2 = 50 mA  
30  
1
µA  
mA  
f = 10 Hz to 1 MHz,  
OUT2 = 1 µF  
Output noise volt. (RMS)  
VNOVL  
RSW1  
RSW2  
RSW3  
6, 7  
350  
4.0  
7.0  
7.0  
µV  
SW1-INPUT = 2.8 V  
(Gate/Source = 2.8 V)  
45, 46  
51, 52  
47, 48  
General  
SW2-INPUT = 2.8 V  
(Gate/Source = 2.8 V)  
purpose Input/Output resistance  
switches  
SW3-INPUT = 2.8 V  
(Gate/Source = 2.8 V)  
(Continued)  
8
 
MB3891  
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)  
Value  
Parameter  
Symbol Pin No.  
Conditions  
Unit  
Min. Typ. Max.  
Output voltage  
Line regulation  
Load regulation  
VO  
3, 4 50 µA > OUT3 > 100 mA 2.700 2.800 2.900  
V
Line  
Load  
3, 4 3.1 V < VBAT3 < 5.5 V  
10  
30  
mV  
mV  
3, 4 50 µA > OUT3 > 100 mA  
Ripple rejection  
VBAT3/OUT3  
R.R  
3, 4 f = 217 Hz  
45  
dB  
LDO3  
(OUT3)  
Dropout voltage  
VDO  
3, 4 OUT3 = 100 mA  
250 mV  
GND current at low load  
IGND  
5
OUT3 > 1 mA  
30  
2
µA  
GND current at max.  
load  
IGND  
5
OUT3 = 100 mA  
mA  
f = 10 Hz to 1 MHz,  
OUT3 = 1 µF  
Output noise volt. (RMS)  
VNOVL  
3, 4  
350 µV  
50 µA > OUT4 > 100 mA,  
CONT4 = “L”  
VO  
VO  
40, 41  
40, 41  
2.700 2.800 2.900  
2.400 2.500 2.600  
V
V
Output voltage  
50 µA > OUT4 > 100 mA,  
CONT4 = “H”  
Line regulation  
Load regulation  
Ripple rejection  
Line  
40, 41 3.1 V < VBAT4 < 5.5 V  
10  
30  
mV  
mV  
Load  
40, 41 50 µA > OUT4 > 100 mA  
LDO4  
R.R  
40, 41 f = 217 Hz  
45  
dB  
(OUT4) VBAT4 - OUT4/OUT4  
Dropout voltage  
VDO  
IGND  
40, 41 OUT4 = 100 mA  
250 mV  
GND current at low load  
39  
OUT4 > 1 mA  
30  
µA  
GND current at max.  
load  
IGND  
39  
OUT4 = 100 mA  
2
mA  
f = 10 Hz to 1 MHz,  
OUT4 = 1 µF  
Output noise volt. (RMS)  
VNOVL  
40, 41  
500 µV  
Output voltage  
Line regulation  
Load regulation  
Ripple rejection  
VO  
58  
58  
58  
50 µA > OUT5 > 50 mA 2.700 2.800 2.900  
V
Line  
Load  
3.1 V < VBAT3 < 5.5 V  
10  
30  
mV  
mV  
50 µA > OUT5 > 50 mA  
R.R  
58  
f = 217 Hz  
45  
dB  
VBAT3/OUT5  
LDO5  
Dropout voltage  
(OUT5)  
VDO  
IGND  
58  
59  
OUT5 = 50 mA  
OUT5 > 500 µA  
250 mV  
GND current at low load  
20  
µA  
GND current at max.  
load  
IGND  
59  
58  
OUT5 = 50 mA  
1
mA  
f = 10 Hz to 1 MHz,  
OUT5 = 1 µF  
Output noise volt. (RMS)  
VNOVL  
350 µV  
(Continued)  
9
 
MB3891  
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)  
Value  
Parameter  
Symbol Pin No.  
Conditions  
Unit  
Min. Typ. Max.  
10 µA > V-BACKUP  
> 250 µA  
Output voltage  
VO  
21  
21  
21  
2.000 2.100 2.200  
V
Line regulation  
Load regulation  
Line  
Load  
3.1 V < VBAT2 < 5.5 V  
10  
30  
mV  
mV  
10 µA > V-BACKUP  
> 250 µA  
Ripple rejection  
VBAT2/  
V-BACKUP  
R.R  
21  
f = 217 Hz  
25  
dB  
LDO6  
(V-BACKUP)  
GND current at  
low load  
IGND  
IGND  
VNOVL  
IRC  
19  
19  
21  
21  
V-BACKUP > 10 µA  
V-BACKUP = 250 µA  
10  
50  
µA  
µA  
µV  
nA  
GND current at  
max. load  
Output noise volt.  
(RMS)  
f = 10 Hz to 1 MHz,  
V-BACKUP = 1 µF  
500  
100  
VBAT2 = 0 V,  
V-BACKUP = 3.0 V  
Reverse current  
Output voltage  
Line regulation  
Load regulation  
VO  
24  
24  
24  
0 µA > REF-OUT > 50 µA  
3.1 V < VBAT2 < 5.5 V  
1.200 1.225 1.250  
V
Line  
Load  
10  
6
mV  
mV  
0 µA > REF-OUT > 50 µA  
Ripple rejection  
VBAT2/  
REF-OUT  
REF-OUT  
R.R  
24  
f = 217 Hz  
50  
dB  
Output noise volt.  
(RMS)  
f = 10 Hz to 1 MHz,  
REF-OUT = 27 nF  
VNOVL  
VO  
24  
29  
29  
250  
µV  
50 µA > VSIMOUT > 10 mA,  
SIMPROG = “H”  
4.600 5.000 5.400  
V
Output voltage  
50 µA > VSIMOUT > 10 mA,  
SIMPROG = “L”  
VSIMOUT  
chargepump  
VO  
2.760 3.000 3.240  
50  
V
Line regulation  
Load regulation  
Line  
29  
29  
3.1 V < VCC-VSIM < 5.5 V  
mV  
Load  
50 µA > VSIMOUT > 10 mA  
100 mV  
(Continued)  
10  
 
MB3891  
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)  
Value  
Parameter  
Ripple rejection  
Symbol Pin No.  
Conditions  
Unit  
Min.  
Typ.  
Max.  
VCC-VSIM/  
VSIMOUT  
R.R  
29  
f = 217 Hz  
30  
dB  
3.1 V < VCC-VSIM < 5.5 V,  
VSIMOUT = 5 V  
IO  
IO  
29  
29  
10  
6
mA  
mA  
µA  
%
Output current  
3.1 V < VCC-VSIM < 5.5 V,  
VSIMOUT = 3 V  
VSIMOUT  
chargepump  
GND current at  
no load  
IGND  
η
32  
VSIMOUT > 50 µA  
100  
Efficiency at  
max. load  
VSIMOUT = 10 mA,  
VSIMOUT = 5 V  
25, 29  
29  
85  
Output ripple  
voltage  
f = 10 Hz to 1 MHz,  
VSIMOUT = 10 µF  
VRP  
ILDO  
VIH  
VIL  
VOH  
VOL  
100  
100  
mVPP  
nA  
V
Shutdown sup-  
ply current  
25  
VSIM-ON = “L”  
33, 34,  
35  
0.7 ×  
OUT1  
OUT1  
Input voltage  
33, 34,  
35  
0.3 ×  
OUT1  
GSM/SIM  
logic level  
translation  
µp interface  
0
V
0.8 ×  
OUT1  
35  
35  
µP-IO (max.) = 20 µA  
µP-IO (max.) = 1 mA  
OUT1  
V
Output voltage  
0.2 ×  
OUT1  
0
V
(Continued)  
11  
 
MB3891  
(Continued)  
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)  
Value  
Parameter  
Symbol Pin No.  
Conditions  
Unit  
Min.  
Typ.  
Max.  
VSIMOUT  
VSIMOUT  
VOH  
36  
RST (max.) = 20 µA  
V
0.7  
Output voltage  
VOL  
TR  
36  
36  
36  
RST (max.) = 200 µA  
0
0.6  
400  
400  
V
Rise time  
Fall time  
RESET-IN = RST = 30 pF  
RESET-IN = RST = 30 pF  
µs  
µs  
TF  
0.7 ×  
VSIMOUT  
VOH  
37  
CLK (max.) = 20 µA  
VSIMOUT  
V
Output voltage  
SIM  
interface  
5 V  
(SIMPROG  
= H)  
VOL  
TR  
37  
37  
37  
38  
38  
CLK (max.) = 200 µA  
CLK-IN = CLK = 30 pF  
CLK-IN = CLK = 30 pF  
SIM-IO (max.) = 20 µA  
SIM-IO (max.) = 1 mA  
0
0.5  
27  
V
ns  
ns  
V
Rise time  
Fall time  
TF  
27  
VOH  
VOL  
3.8  
0
VSIMOUT  
0.4  
Output voltage  
V
0.7 ×  
VSIMOUT  
VIH  
38  
VSIMOUT  
V
Input voltage  
VIL  
TR  
TF  
38  
38  
38  
0
0.8  
1
V
Rise time  
Fall time  
SIM-IO = 30 pF  
SIM-IO = 30 pF  
µs  
µs  
1
0.8 ×  
VOH  
VOL  
36  
36  
RST (max.) = 20 µA  
RST (max.) = 200 µA  
VSIMOUT  
V
V
VSIMOUT  
Output voltage  
0.2 ×  
VSIMOUT  
0
Rise time  
Fall time  
TR  
36  
36  
RESET-IN = RST = 30 pF  
RESET-IN = RST = 30 pF  
400  
400  
µs  
µs  
TF  
0.7 ×  
VOH  
37  
37  
CLK (max.) = 20 µA  
CLK (max.) = 200 µA  
VSIMOUT  
V
V
VSIMOUT  
Output voltage  
0.2 ×  
VSIMOUT  
VOL  
0
SIM  
interface  
3 V  
(SIMPROG  
= L)  
Rise time  
Fall time  
TR  
37  
37  
CLK-IN = CLK = 30 pF  
CLK-IN = CLK = 30 pF  
50  
50  
ns  
ns  
TF  
0.7 ×  
VOH  
VOL  
VIH  
38  
38  
38  
SIM-IO (max.) = 20 µA  
SIM-IO (max.) = 1 mA  
VSIMOUT  
0.4  
V
V
V
VSIMOUT  
Output voltage  
0
0.7 ×  
VSIMOUT  
VSIMOUT  
Input voltage  
0.2 ×  
VSIMOUT  
VIL  
38  
0
V
Rise time  
Fall time  
TR  
TF  
38  
38  
SIM-IO = 30 pF  
SIM-IO = 30 pF  
1
1
µs  
µs  
12  
 
MB3891  
TYPICAL CHARACTERISTICS  
Power supply current vs. power supply voltage  
Power supply current vs. power supply voltage  
400  
350  
300  
250  
200  
150  
100  
50  
Ta = +25 °C  
Ta = +25 °C  
CONT1 = OPEN  
CONT2 = “H”  
CONT3 = “H”  
CONT1 = “L”  
350  
300  
250  
200  
150  
100  
50  
CONT2 = “H”  
CONT3 = “H”  
CONT4 = OPEN  
CONT5 = OPEN  
CONT6 = “H”  
CONT4 = OPEN  
CONT5 = OPEN  
CONT6 = OPEN  
VSIM-ON = “H”  
SIMPROG = “H”  
VSIM-ON = “H”  
SIMPROG = “H”  
OUT1 = No load  
OUT2 = No load  
OUT3 = No load  
OUT4 = No load  
OUT5 = No load  
OUT1 = No load  
OUT2 = No load  
OUT3 = No load  
OUT4 = No load  
OUT5 = No load  
V-BACKUP = No load  
VSIMOUT = No load  
V-BACKUP = No load  
VSIMOUT = No load  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
Power supply voltage VBAT (V)  
Power supply voltage VBAT (V)  
Power supply current , GND current vs.  
power supply voltage  
Output voltage vs. power supply  
voltage (LDO1)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
450  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Ta = +25 °C  
IBAT  
CONT1 = OPEN  
CONT2 = “H”  
400  
350 CONT3 = “H”  
CONT4 = OPEN  
300  
250  
200  
150  
100  
50  
CONT5 = OPEN  
CONT6 = “H”  
IGND  
VSIM-ON = “H”  
SIMPROG = “H”  
OUT1 = 18 Ω  
OUT2 = 56 Ω  
OUT3 = 28 Ω  
OUT4 = 28 Ω  
OUT5 = 56 Ω  
Ta = +25 °C  
OUT1 = 1 µF  
CONT1 = OPEN  
CONT6 = “H”  
V-BACKUP = 8.4 kΩ  
VSIMOUT = 510 Ω  
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
Power supply voltage VBAT (V)  
Power supply voltage VBAT (V)  
Output voltage vs. power supply voltage (LDO1)  
Output voltage vs. load current (LDO1)  
3.0  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
Ta = +25 °C  
OUT1 = 1 µF  
2.5  
CONT1 = “L”  
CONT6 = OPEN  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta = +25 °C  
VBAT = 3.6 V  
CONT1 = “L”  
CONT6 = OPEN  
0
1
2
3
4
5
0
100 200 300 400 500 600 700 800  
Power supply voltage VBAT (V)  
Load current ILOAD (mA)  
(Continued)  
13  
 
MB3891  
Ripple rejection vs. frequency (LDO1)  
Ripple rejection vs. frequency (LDO1)  
0
20  
0
20  
Ta = +25 °C  
VBAT = 3.6 V  
OUT1 = 1 µF  
CONT1 = “L”  
CONT6 = OPEN  
40  
40  
Ta = +25 °C  
60  
60  
VBAT = 3.6 V  
OUT1 = 1 µF  
OUT1 = 18 Ω  
CONT1 = “L”  
CONT6 = OPEN  
80  
80  
100  
100  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequency f (Hz)  
Frequency f (Hz)  
Dropout voltage vs. load current (LDO1)  
Output voltage vs. ambient temperature (LDO1)  
2.13  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VBAT = 2.1 V  
CONT1 = OPEN  
CONT6 = “H”  
VBAT = 3.6 V  
CONT1 = OPEN  
CONT6 = “H”  
Ta = +85 °C  
2.12  
2.11  
2.10  
2.09  
2.08  
Ta = 20 °C  
Ta = +25 °C  
40 20  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
Load current ILOAD (mA)  
Ambient temperature Ta ( °C)  
Output voltage rising waveforms (LDO1)  
10  
5
VBAT  
0
OUT1  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta = +25°C  
OUT1 = 18 Ω  
CONT1 = “L”  
CONT6 = OPEN  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
t (ms)  
14  
 
MB3891  
Output voltage falling waveforms (LDO1)  
Output voltage falling waveforms (LDO1)  
4
3
2
1
0
Ta = +25°C  
Ta = +25°C  
VBAT = 1 µF  
OUT1 = No load  
CONT1 = “L”  
OUT1 = No load  
CONT1 = “L”  
4
2
0
CONT6 = OPEN  
CONT6 = OPEN  
VBAT  
OUT1  
VBAT  
OUT1  
2
1
0
2
1
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0
50 100 150 200 250 300 350 400 450 500  
t (s)  
t (ms)  
Output voltage falling waveforms (LDO1)  
Output voltage rising waveforms (LDO1)  
10  
CONT1  
4
5
0
2
0
Ta = +25°C  
CONT1  
OUT1  
VBAT = 3.6 V  
OUT1 = No load  
CONT6 = OPEN  
2.0  
1.5  
1.0  
0.5  
0.0  
2
1
0
Ta = +25°C  
VBAT = 3.6 V  
OUT1 = 18 Ω  
CONT6 = OPEN  
OUT1  
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
t (µs)  
t (ms)  
Waveform at rapid change of output load  
(LDO1)  
[Measurement diagram]  
OUT1  
VBAT = 3.6 V  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta = +25°C  
VBAT = 3.6 V  
CONT1 = “L”  
CONT6 = OPEN  
VREF = 1.225 V  
(IC internal)  
LDO1  
OUT1 120 mA  
2
1
0
1 µF  
VC  
VC  
4 V  
0 V  
OUT1 = 0 A 120 mA  
0
10 20 30 40 50 60 70 80 90 100  
t (µs)  
(Continued)  
15  
 
MB3891  
Waveform at rapid change of output load (LDO1)  
[Measurement diagram]  
OUT1  
VBAT = 3.6 V  
2.0  
1.5  
1.0  
0.5  
0.0  
VREF = 1.225 V  
(IC internal)  
LDO1  
OUT1 120 mA  
VC  
2
1
0
Ta = +25°C  
VBAT = 3.6 V  
CONT1 = “L”  
CONT6 = OPEN  
1 µF  
VC  
4 V  
0 V  
OUT1 = 120 mA 0 A  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
t (ms)  
[Measurement diagram]  
Waveform at rapid change of output load (LDO2)  
3.0  
VBAT = 3.6 V  
OUT2  
2.5  
Ta = +25°C  
VBAT = 3.6 V  
CONT1 = “L”  
2.0  
1.5  
1.0  
0.5  
0.0  
VREF = 1.225 V  
(IC internal)  
CONT2 = “H”  
CONT6 = OPEN  
LDO2  
3
2
1
0
OUT2 50 mA  
1 µF  
VC  
VC  
4 V  
0 V  
OUT2 = 0 A 50 mA  
0
10 20 30 40 50 60 70 80 90 100  
t (µs)  
[Measurement diagram]  
Waveform at rapid change of output load (LDO2)  
3.0  
VBAT = 3.6 V  
OUT2  
2.5  
2.0  
VREF = 1.225 V  
VC  
(IC internal)  
1.5  
1.0  
0.5  
0.0  
3
2
1
0
LDO2  
OUT2 50 mA  
Ta = +25°C  
VBAT = 3.6 V  
CONT1 = “L”  
CONT2 = “H”  
CONT6 = OPEN  
1 µF  
VC  
4 V  
0 V  
OUT2 = 50 mA 0 A  
0
10 20 30 40 50 60 70 80 90 100  
t (ms)  
(Continued)  
16  
 
MB3891  
Reference voltage vs. power supply voltage  
Reference voltage vs. ambient temperature  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VBAT = 3.6 V  
0.2  
0.0  
Ta = +25 °C  
VFIL = 0.1 µF  
40 20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
6
7
Power supply voltage VBAT (V)  
Ambient temperature Ta ( °C)  
Power supply current vs. power supply voltage  
(VSIMOUT Chargepump)  
Power supply current vs. power supply voltage  
(VSIMOUT Chargepump)  
100000  
100000  
VSIMOUT = 510 Ω  
VSIMOUT = 510 Ω  
10000  
10000  
1000  
1000  
VSIMOUT = No load  
VSIMOUT = No load  
100  
100  
Ta = +25 °C  
Ta = +25 °C  
VBAT = 3.6 V  
10  
10  
VBAT = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “H”  
VSIM-ON = “H”  
SIMPROG = “L”  
1
1
0
1
2
3
4
5
0
1
2
3
4
5
Power supply voltage VCC-VSIM (V)  
Power supply voltage VCC-VSIM (V)  
Output voltage vs. power supply voltage  
(VSIMOUT Chargepump)  
5
4
3
2
1
0
SIMPROG = “H”  
VSIMOUT = No load  
SIMPROG = “L”  
VSIMOUT = No load  
Ta = +25 °C  
VBAT = 3.6 V  
VSIM-ON = “H”  
0
1
2
3
4
5
6
7
Power supply voltage VCC-VSIM (V)  
(Continued)  
17  
 
MB3891  
Output voltage vs. load current  
(VSIMOUT Chargepump)  
Output voltage vs. load current  
(VSIMOUT Chargepump)  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
2.91  
2.90  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
Ta = +25 °C  
Ta = +25 °C  
VSIM-ON = “H”  
SIMPROG = “L”  
VSIM-ON = “H”  
SIMPROG = “H”  
VCC-VISM = 5.5 V  
VCC-VISM = 3.1 V  
VCC-VISM = 5.5 V  
VCC-VISM = 3.6 V  
VCC-VISM  
= 3.6 V  
VCC-VISM = 3.1 V  
0
5  
10  
15  
20  
0
5  
10  
15  
20  
Load current ILOAD (mA)  
Load current ILOAD (mA)  
Ripple rejection vs. frequency  
(VSIMOUT Chargepump)  
Ripple rejection vs. frequency  
(VSIMOUT Chargepump)  
0
0
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
20  
40  
20  
40  
SIMPROG = “H”  
VCAP+ VCAP− = 0.1 µF  
VSIMOUT = 10 µF  
Ta = +25 °C  
60  
60  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “H”  
80  
80  
VCAP+ VCAP− = 0.1 µF  
VSIMOUT = 10 µF  
VSIMOUT = 510 Ω  
100  
100  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequency f (Hz)  
Frequency f (Hz)  
Ripple rejection vs. frequency  
(VSIMOUT Chargepump)  
Ripple rejection vs. frequency  
(VSIMOUT Chargepump)  
0
20  
0
20  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “L”  
VCAP+ VCAP− = 0.1 µF  
VSIMOUT = 10 µF  
30  
40  
Ta = +25 °C  
40  
60  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “L”  
80  
80  
VCAP+ VCAP− = 0.1 µF  
VSIMOUT = 10 µF  
VSIMOUT = 510 Ω  
100  
100  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequency f (Hz)  
Frequency f (Hz)  
(Continued)  
18  
 
MB3891  
Efficiency vs. power supply voltage  
(VSIMOUT Chargepump)  
Efficiency vs. power supply voltage  
(VSIMOUT Chargepump)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = +25 °C  
Ta = +25 °C  
VSIM-ON = “H”  
SIMPROG = “H”  
VSIM-ON = “H”  
SIMPROG = “L”  
ILOAD = 10 mA  
ILOAD = 10 mA  
ILOAD = 1 mA  
ILOAD = 1 mA  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Power supply voltage VCC-VSIM (V)  
Power supply voltage VCC-VSIM (V)  
Efficiency vs. load current  
(VSIMOUT Chargepump)  
Efficiency vs. load current  
(VSIMOUT Chargepump)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
VCC-VSIM = 3.1 V  
SIMPROG = “L”  
VCC-VSIM = 3.6 V  
VCC-VSIM = 5.5 V  
VCC-VSIM = 5.5 V  
VCC-VSIM = 3.6 V  
Ta = +25 °C  
VCC-VSIM = 3.1 V  
5  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “H”  
0
10  
15  
20  
0
5  
10  
15  
20  
Load current ILOAD (mA)  
Load current ILOAD (mA)  
Output voltage rising waveforms  
(VSIMOUT Chargepump)  
Output voltage rising waveforms  
(VSIMOUT Chargepump)  
10  
5
10  
5
VSIM-ON  
VSIM-ON  
VSIMOUT  
0
0
5
4
3
2
1
0
VSIMOUT  
3
2
1
0
Ta = +25 °C  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
SIMPROG = “L”  
VBAT = VCC-VSIM = 3.6 V  
SIMPROG = “H”  
VSIMOUT = 510 Ω  
VSIMOUT = 510 Ω  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
t (ms)  
t (ms)  
(Continued)  
19  
 
MB3891  
Output voltage rising waveforms  
Output voltage falling waveforms  
(VSIMOUT Chargepump)  
(VSIMOUT Chargepump)  
10  
5
10  
5
SIMPROG  
VSIMOUT  
SIMPROG  
VSIMOUT  
5
4
3
2
1
0
5
4
3
2
1
0
0
0
Ta = +25 °C  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VSIMOUT = 510 Ω  
VSIM-ON = “H”  
VBAT = VCC-SIM = 3.6 V  
VSIMOUT = 510 Ω  
VSIM-ON = “H”  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
t (ms)  
t (ms)  
Output voltage falling waveforms  
(VSIMOUT Chargepump)  
Output voltage falling waveforms  
(VSIMOUT Chargepump)  
10  
5
10  
5
Ta = +25 °C  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
SIMPROG = “H”  
VBAT = VCC-VSIM = 3.6 V  
SIMPROG = “L”  
VSIMOUT = 510 Ω  
VSIM-ON  
VSIMOUT = 510 Ω  
5
4
3
2
1
0
0
0
VSIM-ON  
3
2
1
0
VSIMOUT  
VSIMOUT  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
t (ms)  
t (ms)  
Output voltage waveforms  
(VSIMOUT Chargepump)  
Output voltage waveforms  
(VSIMOUT Chargepump)  
Ta = +25 °C  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
VBAT = VCC-SIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “H”  
SIMPROG = “L”  
40  
20  
0
VSIMOUT = No load  
AC COUPLED  
VSIMOUT = No load  
AC COUPLED  
20  
0
20  
40  
20  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t (µs)  
t (µs)  
(Continued)  
20  
 
MB3891  
Output voltage waveforms  
(VSIMOUT Chargepump)  
Output voltage waveforms  
(VSIMOUT Chargepump)  
40  
20  
20  
0
0
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “L”  
VSIMOUT = 5.1 kΩ  
AC COUPLED  
20  
40  
Ta = +25 °C  
20  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
SIMPROG = “L”  
VSIMOUT = 510 Ω  
AC COUPLED  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t (µs)  
t (µs)  
Output voltage waveforms  
(VSIMOUT Chargepump)  
Output voltage waveforms  
(VSIMOUT Chargepump)  
60  
40  
40  
20  
20  
0
0
20  
40  
Ta = +25 °C  
20  
40  
60  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
VSIM-ON = “H”  
SIMPROG = “H”  
VSIMOUT = 510 Ω  
AC COUPLED  
SIMPROG = “H”  
VSIMOUT = 5.1 kΩ  
AC COUPLED  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t (µs)  
t (µs)  
Output voltage vs. input voltage (SIM Inter-  
Output voltage vs. input voltage (SIM Interface)  
5
2.5  
2.0  
SIMPROG = "H"  
4
SIMPROG = "L"  
3
1.5  
Ta = +25 °C  
2
1.0  
0.5  
0.0  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
Ta = +25 °C  
VBAT = VCC-VSIM = 3.6 V  
SIMPROG = “L” or “H”  
CONT1 = “L”  
CONT6 = OPEN  
VSIM-ON = "H"  
CONT1 = "L"  
CONT6 = OPEN  
1
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
Input voltage VUPIO (V)  
Input voltage VSIMIO (V)  
(Continued)  
21  
 
MB3891  
(Continued)  
Output voltage vs. ambient temperature  
(SIM Interface)  
Output voltage vs. ambient temperature  
(SIM Interface)  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
VBAT = VCC-VSIM = 3.6 V  
VBAT = VCC-VSIM = 3.6 V  
VSIM-ON = “H”  
VSIM-ON = “H”  
SIMPROG = “L”  
SIMPROG = “H”  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta ( °C)  
Power dissipation vs. ambient temperature  
Ambient temperature Ta ( °C)  
1000  
800  
600  
400  
200  
0
40 20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta ( °C)  
22  
 
MB3891  
FUNCTIONAL DESCRIPTION  
(1) MAIN UVLO/BACKUP UVLO  
Transient power-on surge states or sudden drops in supply voltage (VBAT2) can cause an IC to operate abnor-  
mally, leading to destruction or damage to system elements. To prevent this type of fault, the undervoltage lockout  
circuits (UVLO/ Backup UVLO) will shut off the output from OUT1 to V-BACKUP if the supply voltage falls below  
the UVLO circuit threshold voltage (3.0 V/2.8 V typ.). System operation is restored as soon as the supply voltage  
rises above the UVLO circuits threshold voltage (3.2 V typ.).  
(2) LDO1  
The LDO1 circuits uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the OUT1  
terminal (pin 12,13). Power can be drawn from the OUT1 terminal for external use, up to a maximum load current  
of 120 mA.  
(3) XPOWERGOOD (RESET)  
When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), after a delay interval set by a capacitor  
(CDELAYCAP) connected to the DELAYCAP terminal (pin 18), the XPOWERGOOD terminal (pin 17) goes to “H”  
level and resets the microcomputer. At the same time, the LDO2, LDO3, and LDO4 output is controlled ON/OFF.  
(4) LDO2  
The LDO2 circuit uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT2  
terminal (pin 6,7) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is  
input at the CONT2 terminal (pin 16). Power can be drawn from the OUT2 terminal for external use, up to a  
maximum load current of 50 mA.  
(5) General Purpose switches  
Any of the OUT terminals can be connected to any SW-INPUT terminal so that when the corresponding SW-  
ON terminal is at “H” level, the OUT terminal voltage can be drawn from the associated SW-OUTPUT terminal.  
(6) LDO3  
The LDO3 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT3  
terminal (pin 3,4) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is  
input at the CONT3 terminal (pin 56). Power can be drawn from the OUT3 terminal for external use, up to a  
maximum load current of 100 mA.  
(7) LDO4  
The LDO4 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT4  
terminal (pin 40,41) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is  
input at the CONT3 terminal (pin 56) , and an “L” level signal is input at the CONT4 terminal (pin 44). When an  
“H” level signal is input at the CONT4 terminal, the output voltage at the OUT4 terminal is 2.5 V (typ.). Power  
can be drawn from the OUT4 terminal for external use, up to a maximum load current of 100 mA.  
23  
 
MB3891  
(8) LDO5  
The LDO5 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT5  
terminal (pin 57) when the OUT1 terminal (pin 12,13) is in output state and an “H” level signal is input at the  
CONT5 terminal (pin 57). Power can be drawn from the OUT5 terminal for external use, up to a maximum load  
current of 50 mA.  
(9) LDO6  
The LDO6 circuit uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the V-BACKUP  
terminal (pin 21). Power can be drawn for external use, from the V-BACKUP terminal, up to a maximum load  
current of 250 µA.  
(10) REF-OUT  
This circuit uses the reference voltage generated by the reference voltage block (1.225 V typ.) to produce a  
temperature compensated reference voltage (1.225 V typ.) at the REF-OUT terminal(pin 24) by means of a  
voltage follower. The reference voltage can also be drawn from the REF-OUT terminal for external use, up to a  
load current of 50 µA.  
(11) VSIMOUT Chargepump  
The VSIMOUT charge pump uses the voltage from the battery and generates 5.0 V (typ.) voltage at the VSIMOUT  
terminal (pin 29) when an “H” level signal is input at the SIMPROG terminal (pin 27) , or 3.0 V (typ.) voltage  
when an “L” level signal input at the SIMPROG terminal. This voltage can also be drawn from the VSIMOUT  
terminal for external use, up to a load current of 10 mA.  
(12) GSM/SIM Logic Translation µP Interface  
When a signal is input from the microprocessor to the RESET-IN terminal(pin 33) and CLK-IN terminal (pin 34),  
a level-shifted voltage is output from the RST terminal (pin 36) and CLK terminal (pin 37) to the SIM card. The  
µP-IO terminal (pin 35) and SIM-IO terminal (pin 38) are input/output pins and carry signals between the  
microprocessor and SIM card.  
(13) SIM Interface 5 V (SIMPROG = “H”)  
When an “H” level signal is input to the SIMPROG terminal (pin 27), 5.0 V (typ.) voltage is generated from the  
VSIMOUT terminal (pin 29) as a power supply for the SIM card.  
(14) SIM Interface 3 V (SIMPROG = “L”)  
When an “L” level signal is input to the SIMPROG terminal (pin 27), 3.0 V (typ.) voltage is generated from the  
VSIMOUT terminal (pin 29) as a power supply for the SIM card.  
SETTING THE XPOWERGOOD TIME  
When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), the capacitor (CDELAYCAP) connected to the  
DELAYCAP terminal (pin 18) starts charging, the XPOWERGOOD terminal (pin 17) voltage rises. The XPOW-  
ERGOOD terminal voltage rising time (XPOWERGOOD time) can be set by a capacitor connected to the  
DELAYCAP terminal.  
XPOWERGOOD time : TXPG (s) =: 0.8 × CDELAYCAP (µF)  
24  
 
MB3891  
OPERATION TIMING CHART  
Input  
VBAT1 to VBAT4,  
VCC-VSIM  
CONT1  
CONT6  
CONT5  
CONT2  
CONT3  
SW1-ON  
SW2-ON (SW3-ON)  
VSIM-ON  
SIMPROG  
Output  
REF-OUT  
OUT6  
2.0 V  
OUT1  
XPOWERGOOD  
OUT5  
delay  
OUT2  
OUT3 (OUT4)  
SW1-OUTPUT  
SW2-OUTPUT  
(SW3-OUTPUT)  
VSIMOUT = 5 V  
VSIMOUT  
VSIMOUT = 3 V  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)  
(1) : Battery controlled  
(5) : OUT1 hold  
(2) : BACKUP UVLO ON  
(3) : phone turned on  
(6) to (12) : µP controlled  
(14) : Main UVLO off  
(4) : XPOWERGOOD on  
(16) : BACKUP UVLO off  
25  
 
MB3891  
APPLICATION EXAMPLE  
C12  
C11  
1 µF  
1 µF  
20  
8
9 10 11  
VBAT1  
VBAT2  
KEYPAD  
14  
CONT1  
µP  
12  
13  
15 CONT6  
OUT1  
C1  
1 µF  
16 CONT2  
R1  
XPOWERGOOD  
DELAYCAP  
GND1  
17  
18  
19  
200 kΩ  
SW1-ON  
SW2-ON  
53  
54  
C2  
0.033 µF  
55 SW3-ON  
6
7
OUT2  
C3  
1 µF  
56  
CONT3  
R2  
200 kΩ  
CONT5  
CONT4  
57  
44  
SW2-INPUT  
52  
51  
R3  
SW2-OUTPUT  
200 kΩ  
22 VREF  
23 VFIL  
48  
SW3-INPUT  
SW3-OUTPUT 47  
C8  
0.1 µF  
REF-OUT  
24  
26  
60  
VBAT3 61  
62  
C13  
1 µF  
VSIM-ON  
R4  
200 kΩ  
27 SIMPROG  
3
OUT3  
4
R5  
C4  
1 µF  
200 kΩ  
33 RESET-IN  
34 CLK-IN  
35 µP-IO  
GND3  
5
46  
SW1-INPUT  
SW1-OUTPUT 45  
58  
25 VCC-VSIM  
28 OSC  
OUT5  
C5  
1 µF  
GND5 59  
42  
29 VSIMOUT  
C9  
10 µF  
30  
VCAP+  
VBAT4  
C10  
0.1 µF  
C14  
1 µF  
43  
31 VCAP−  
40  
OUT4  
41  
C6  
1 µF  
36 RST  
CLK  
37  
38  
SIM  
39  
21  
GND4  
SIM-IO  
V-BACKUP  
C7  
1 µF  
32  
GND-VSIM  
N.C.  
Pin : 1, 2, 49, 50, 63, 64  
26  
 
MB3891  
USAGE PRECAUTIONS  
• Printed circuit board ground lines should be set up with consideration for common impedance.  
Take appropriate static electricity measures.  
• Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personal should be grounded with resistance of 250 kto 1 Mbetween body and ground.  
• Do not apply negative voltages  
Theuseofnegativevoltagesbelow-0.3VmaycreateparasitictransistorsonLSIlines, Whichcancauseabnormal  
operation.  
ORDERING INFORMATION  
Part number  
MB3891PFV  
Package  
Remarks  
64-pin Plastic LQFP  
(FPT-64P-M03)  
27  
 
MB3891  
PACKAGE DIMENSION  
64-pin plastic LQFP  
(FPT-64P-M03)  
Note : Pins width and pins thickness include plating thickness.  
12.00±0.20(.472±.008)SQ  
10.00±0.10(.394±.004)SQ  
48  
33  
49  
32  
0.08(.003)  
Details of "A" part  
INDEX  
1.50 +0.20  
–0.10  
–.004  
(Mounting height)  
.059 +.008  
64  
17  
"A"  
0~8°  
1
16  
LEAD No.  
0.50±0.08  
(.020±.003)  
0.18 +0.08  
.007 +.003  
–0.03  
0.145±0.055  
(.006±.002)  
M
0.08(.003)  
0.10±0.10  
(.004±.004)  
(Stand off)  
–.001  
0.50±0.20  
(.020±.008)  
0.45/0.75  
(.018/.030)  
0.25(.010)  
C
1998 FUJITSU LIMITED F64009S-3C-6  
Dimensions in mm (inches) .  
 
MB3891  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0007  
FUJITSU LIMITED Printed in Japan  
 

Festool Sander DTS 400 EQ User Manual
Fireboy Xintex LTD Automobile Parts 8402 User Manual
Fisher Price Riding Toy T3857 User Manual
Gefen Network Router EXT HDKVM LAN User Manual
GE Freezer FCM13 User Manual
GE Freezer FUF17DM User Manual
Genesis Advanced Technologies Gas Grill 55274 User Manual
GE Washer WWM620M User Manual
Gianni Industries Door EM NH300 Series User Manual
Global Machinery Company Nail Gun ALN18V User Manual